https://www.tensorflow.org/install/install_linux
First install python and pip
sudo apt-get install python python-pip python-dev sudo pip install --upgrade pip virtualenv
--- WITH A GPU ---
Install the GPU if not already done as described here:
https://www.pugetsystems.com/labs/hpc/NVIDIA-CUDA-with-Ubuntu-16-04-beta-on-a-laptop-if-you-just-cannot-wait-775/
Verify that you even have a usable gpu with (it must be one compatiable with cuda
lspci | grep -i nvidia
Install Cuda drivers
Remove prior installs (if you have a problem with it)
sudo apt-get purge nvidia-cuda* sudo apt-get install cuda
download the recent cuda drivers from
https://developer.nvidia.com/cuda-downloads
install the drivers
chmod 755 cuda_7.5.18_linux.run sudo ./cuda_7.5.18_linux.run --override
Confirm setup
which nvcc nvcc --version nvidia-smi
Output should be something like
nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2015 NVIDIA Corporation Built on Tue_Aug_11_14:27:32_CDT_2015 Cuda compilation tools, release 7.5, V7.5.17 Sat Mar 18 14:16:58 2017 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 367.57 Driver Version: 367.57 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| | 0 GeForce GTX 970M Off | 0000:01:00.0 Off | N/A | | N/A 55C P0 22W / N/A | 586MiB / 3016MiB | 8% Default | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: GPU Memory | | GPU PID Type Process name Usage | |=============================================================================| | 0 1144 G /usr/lib/xorg/Xorg 366MiB | | 0 1922 G compiz 111MiB | | 0 2302 G ...bled/ExtensionDeveloperModeWarning/Defaul 107MiB | +-----------------------------------------------------------------------------+
Install cudnn drivers
http://askubuntu.com/questions/767269/how-can-i-install-cudnn-on-ubuntu-16-04
Download the drivers
https://developer.nvidia.com/cudnn
Locate where your cuda installation is. it is /usr/lib/... and /usr/include or /urs/local/cuda/.
which nvcc ldconfig -p | grep cuda
Step 3: Copy the files:
cd extracted_driver/ sudo cp -P include/cudnn.h /usr/include sudo cp -P lib64/libcudnn* /usr/lib/x86_64-linux-gnu/ sudo chmod a+r /usr/lib/x86_64-linux-gnu/libcudnn*
Confirm setup
ldconfig -p | grep cudnn
should be something like:
libcudnn.so.5 (libc6,x86-64) => /usr/lib/x86_64-linux-gnu/libcudnn.so.5 libcudnn.so (libc6,x86-64) => /usr/lib/x86_64-linux-gnu/libcudnn.so
--- INSTALL KEY TOOLS ---
Install Machine learning essentials
sudo pip install numpy sudo pip install pandas sudo pip install scikit-learn sudo pip install jupyter sudo pip install xgboost
Now you can install tensorflow with GPU as follows
sudo pip install tensorflow-gpu sudo pip install keras
Or without:
sudo pip install tensorflow sudo pip install keras
No comments:
Post a Comment